

THE NATIONAL CHEMISTRY CONTEST 1ST EDITION

FORM 4

Chemistry Marking Scheme

QUESTION		ANSWER	MARKS	
1.	(a)	$3Fe_{(s)} + 4H_2O_{(g)} \rightarrow Fe_3O_{4(s)} + 4H_{2(g)}$	(1 mks)	
	(b)	$Fe_{3}O_{4(s)} + 8HCl_{(aq)} \rightarrow 4H_{2}O_{(l)} + 2FeCl_{3(aq)} + FeCl_{2(aq)}$	(1 mks)	
2.		It has a bigger surface area which spreads heat energy.	$(1/_2 \text{ mks})$	
3.	(a)	It could crack.	$(1/_2 \text{ mks})$	
	(b)	To prevent the gas from coming out of the flask.	$(1/_2 \text{ mks})$	
	(c)	To prevent the gas from coming out of the flask.	$(1/_2 \text{ mks})$	
4.		-250.5 °C	(1 mks)	
		432cm ³		
5.		Element Z	(1 mks)	
6.		• To 2M sodium hydroxide solution, add an equal volume of 2M sulphuric (VI) acid solution while stirring.	(3 mks)	
		• Heat the solution to saturation and allow it to cool for crystals to form.		
		• Dry between filter papers.		
7.		128	(1 mks)	
8.		Increase in temperature increases the pressure of the gas/ temperature is directly proportional to the pressure of the gas.	$(^{1}/_{2} \text{ mks})$	
9.	(a)	RCOO ⁻ Na ⁺ - Soapy ROSO ₃ ⁻ Na ⁺ - Soapless	(1 mks)	
	(b)	ROSO₃-Na⁺ / Soapless This is because the agent does not form scum/insoluble ppt with water containing Ca^{2+}/Mg^{2+} .	(1 mks)	
10.	(a)	Molecular Formula C_2H_4	(1 mks)	
	(b)(i)	H C = C H	$(1/_2 \text{ mks})$	
	(ii)	$C_2H_4 + HOBr \rightarrow CH_2OHCH_2Br$	(1 mks)	
	(c)(i)	Acidified potassium manganate (VII)	(1 mks)	
	(ii)	Purple colour of acidified potassium manganate (VII) changes to colourless.	(1 mks)	

THE KENYA HIGH SCHOOL NATIONAL CHEMISTRY CONTEST 1ST EDITION

11.	(i)	Polyethene/polythene	$(1/_2 \text{ mks})$
	(ii)	Rubber	$(1/_2 \text{ mks})$
12.		G-No effervescence	(1 mks)
		H- Effervescence	
13.		In dilute sulphuric (VI) acid, the acid dissociates	(1 mks)
		completely forming higher number of hydrogen ions.	
14.		• The particles may not have the necessary activation	(1 mks)
		energy.	
		• The particles may collide in the wrong orientation.	
15.		• The position of the equilibrium shifts to the left .	(2 mks)
		• This is because increase in pressure favours the	
		direction with fewer numbers of gaseous	
		molecules.	
16.	(i)	ON THE GRAPH	$(1/_2 \text{ mks})$
	(ii)	↑ II	$(^{1}/_{2} \text{ mks})$
		Volume of	
		hydrogen (cm ³)	
		Time (s)	
17.	(a)(i)	-183.4kJ	(1 mks)
	(ii)	4.48dm ³	(1 mks)
	(b)	-358kJ/mol	(1 mks)
	(c)	Some of the heat energy generated is used to dissociate	(1 mks)
		the acid molecules before neutralization occurs.	
18.	(a)	86.6%	(1 mks)
	(b)	10.4g	(1 mks)
19.	(a)	37.1%	(1 mks)
	(b)	82%	(1 mks)
20.	(a)	• $S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$	(1 mks)
		• $2ZnS_{(s)} + 3O_{2(g)} \rightarrow 2ZnO_{(s)} + 2SO_{2(g)}$	
		• $2PbS_{(s)} + 3O_{2(g)} \rightarrow 2PbO_{(s)} + 2SO_{2(g)}$	
		• $4\text{FeS}_{2(s)} + 11\text{O}_{2(g)} \rightarrow 2\text{Fe}_2\text{O}_{3(s)} + 8\text{SO}_{2(g)}$	
	(b)	To remove the impurities which poison/reduces surface	(1 mks)
	(-)	area of the catalyst	
	(c) (i)	Concentrated sulphuric (VI) acid	(1 mks)
	(ii) (ii)	Vanadium (V) oxide	$(1/_2 \text{ mks})$
	()	Platinum	(, 2 , 1110)

THE KENYA HIGH SCHOOL NATIONAL CHEMISTRY CONTEST 1ST EDITION

	(d)	• Sulphur (VI) oxide g	(1 mks)		
		sulphuric (VI) acid t			
		The oleum is diluted concentrated sulphu			
	(a)(i)	concentrated sulphu		(1 mls)	
	(e)(i)	$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3}$	(1 mks)		
	(ii)	• High temperature 45	(1 mks)		
		• Presence of a cataly			
		Platinum			
1	(-)	Pressure 2-3atm	(1/1		
21.	(a)	Aluminium chloride	(1/2 mks)		
	(b)	$2Al_{(s)} + 3Cl_{2(g)} \rightarrow 2AlCl_{3(s)}$	(1 mks)		
	(c)	Prevent entry of moisture.	(1 mks)		
	(d)	Calcium oxide.	$(1/_2 \text{ mks})$		
	(e)	It prevents emission of chl	$(1/_2 \text{ mks})$		
	(f)	Iron metal.	$(1/_2 \text{ mks})$		
	(g)	It sublimes	(1/2 mks)		
	(h) $2P_{(s)} + 3Cl_{2(g)} \rightarrow 2PCl_{3(s)}$			(1 mks)	
22.	(a) (i)	B and E		$(1/_2 \text{ mks})$	
	(ii)	B		$(1/_2 \text{ mks})$	
	(b) (i)	B		$(1/_2 \text{ mks})$	
	(ii)	A	$(1/_2 \text{ mks})$		
	(c)(i)	A	$(1/_2 \text{ mks})$		
	(ii)	С	$(1/_2 \text{ mks})$		
	(iii)	E	(1/2 mks)		
	(iv)	Above	$(1/_2 \text{ mks})$		
	(d) (i)	D	(1/2 mks)		
	(ii)	F	T C	$(1/_2 \text{ mks})$	
23.	(a)	Observation	Inference	(2 mks)	
		No effervescence	SO ₄ ²⁻ present		
		White ppt			
	(b)	Observation	Inference	(2 mks)	
		White ppt soluble in	Al ³⁺ , Zn ²⁺ present		
		excess			
	(c)	Observation	Inference	(2 mks)	
		White ppt insoluble in	Al ³⁺ present		
		excess			
				55	
TOTAL					

