MASENO SCHOOL

JULY/AUGUST MOCK - 2024

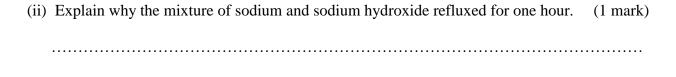
233/2 - CHEMISTRY Paper 2 (THEORY)

Name	•••••••••••••••••••••••••••••••••••••••	Ir	ndex Number	•••••••••••••••••••••••••••••••••••••••
Class	Dat	te	Signature	•••••
INSTRUCTION	<u>ONS</u>	024 MAS	ENO.	
Write yourAnswer all	name and index numb	o24 MAS er in the spaces provided s provided ectronic calculators may	d. Moc	
• All working	gs must be clearly show	wn where necessary.		0
 Candidates questions a 	remising.	For Examiners Us	e Only	P
	Questions 1 2	Maximum Score	Score	MASENO
	3	PERSEVERANCE SHALL SWIN THROUG 10	ЭН	
	5	ON32AM 11	CK 2024	
	7	13		
	TOTAL	80		-

1. The grid below represents part of the periodic table. Study it and answer the questions that follow. Letters are not the actual symbols of the elements.

							В
			P	R		S	
		V			X	Y	
Z	M						

(i)	Select a letter that represents the most reactive non-metal. Explain	(2 marks)
(ii)	Select a letter that represents an element that forms an ion with a charge of 2 ⁻	
(iii)	Select an alkaline earth metal	(1 mark)
(iv)	Identify the least reactive element.	(1 mark)
(v)	What is the formula of the compound formed when ${\bf M}$ reacts with ${\bf P}$?	(1 mark)
(vi)	What type of chemical bond exists in a compound formed when ${\bf R}$ and ${\bf S}$ react?	
(vii)	Write electron configuration of element V.	(1 mark)
(viii)	Compare the atomic and ionic radius of element Y . Explain.	(2 marks)


2. (I) Use the table below to answer the questions that follow.

Substance	Formula
A	$CH_3(CH_2)_2OH$
В	C ₂ H ₅ COOH
С	CH ₃ CHCH ₂
D	$CH_3CH_2CH_3$
E	CH ₃ CCH

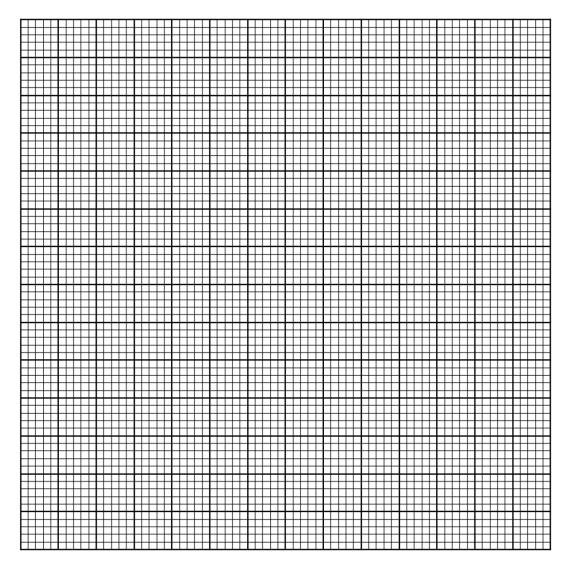
(a)	Explain how one would differentiate between substance D and E in the laboratory	v. (2 marks)
(b)	What is the name of the process involved when substance D reacts with chlorine?	Give the
	condition required for the process.	
	Process -	(1 mark)
	Condition -	(1 mark)
(c)	Select two substances from the table that could be reacted to form a pleasant smel	ling
	substance.	(1 mark)

(II) Biodiesel is made from a vegetable oil by the following reaction.

	4	
i	i. What kind of compounds are vegetable oil and biodiesel?	(1 mark)
ii	i. What other product is made from vegetable oil by heating it with	
	hydroxide.	(1 mark)
iii		
	vegetable oil.	(1 mark
		•••••
		•••••
(III) In the p	preparation of soap, $1.26g$ of a natural fat having the structure shown be	elow was refluxed
with <i>10</i>	$0cm^3$ of $1.0M$ sodium hydroxide for one hour. The reaction mixture wa	s cooled and
unreact	ted alkali titrated with 4.0cm³ of 1.0M hydrochloric acid.	
(i) Co	omplete the equation for complete hydrolysis of the fat in the structure	drawn below.
		(1 mark)
R—	—COOCH ₂	
R—	—соосн	
_		
R	—COOCH ₂	
	(Fat)	

(iii) Calculate the relative formula mass of fat.	(2 marks)
---	-----------

3.	a) What is meant by molar heat of neutralization?				
		••••••			

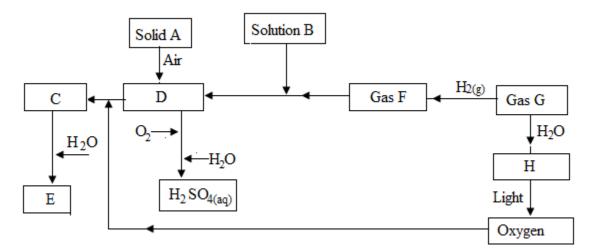

b) In an experiment to determine the molar heat of neutralization, $50cm^3$ of 1M hydrochloric acid was neutralized by adding $10cm^3$ portions of dilute sodium hydroxide. During an experiment, the data in the table below was obtained.

Volume of sodium hydroxide (cm ³)	0	10	20	30	40	50	60
Temperature of mixture (°C)	25.0	27.0	29.0	31.0	31.0	30.0	29.0

i) On the grid provided, plot a graph of temperature (y-axis) against volume of sodium hydroxide (x-axis) added. (3 marks)

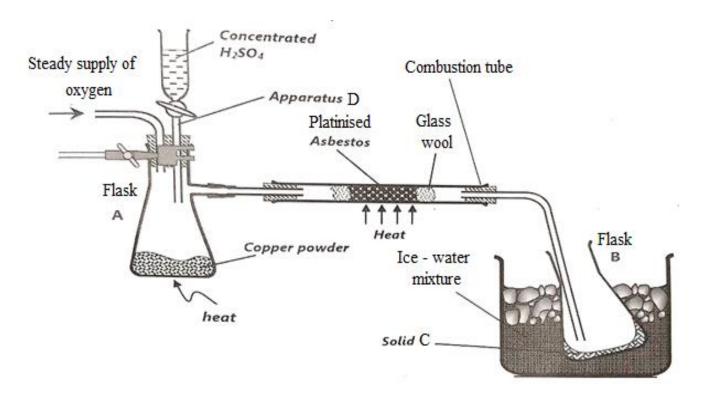
					_
ii)	Erom	tha	aronh	data	ermine
	1,1()111	1115	viani	(1010	

I)	Volume of sodium hydroxide which completely neutralizes 50cm ³ of 1M hy acid.	(1 mark)
II)	Change in temperature ΔT , when complete neutralization occurred.	(1 mark)



I	II)	Calculate:	
((i)	The heat change ΔH , when complete neutralization occurred. (Specific heat capacity = $4.2J/g/K$, density of solution = $1g/cm^3$)	(2 marks)
((ii)	Molar heat of neutralization of hydrochloric acid with sodium hydroxide.	(2 marks)
III) I	Draw	an energy level diagram for the reaction that occurred.	(2 marks)
, _			(=,
		would the value of molar heat differ if $50cm^3$ of $1M$ ethanoic acid was used in chloric acid? Give a reason.	stead of 1M (1 mark)
			•••••
	•••••		•••••

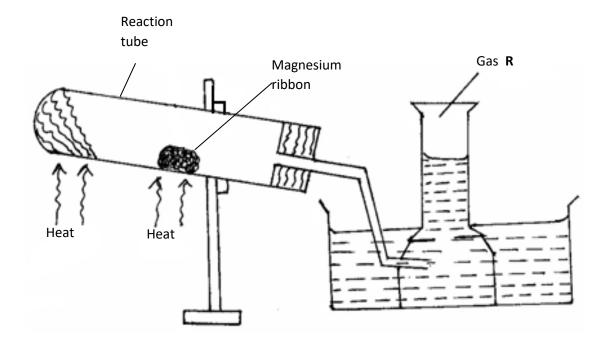
4. Study the flow chart below and answer the questions that follow.


i. Identify substances:

	A	(1 mark)
	B	(1 mark)
	C	(1 mark)
	D	(1 mark)
	E	(1 mark)
	F	(1 mark)
ii.	State two observations that would be made when $gas\ F$ and $solution\ B$ react.	(2 marks)
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
iii.	Write a chemical equation for the reaction between gas G and water.	(1 mark)
		• • • • • • • • • • • • • • • • • • • •
iv.	Name a <i>catalyst</i> to be used for the formation of substance C.	(1 mark)

5. a) Below is an experimental preparation of substance C.

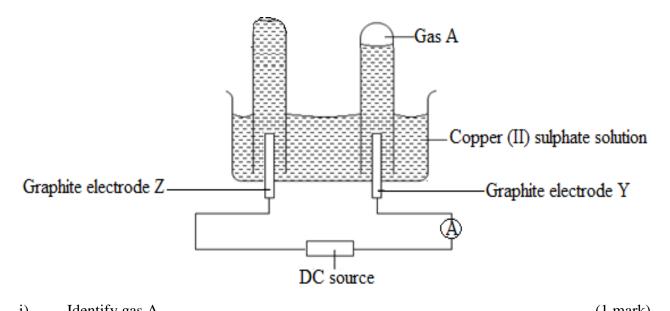
i)	Write an equation for the reaction taking place in flask A.	(1 mark)
ii)	Should concentrated sulphuric (VI) acid be replaced with dilute solution	on, the preparation will
	most likely fail. What is the role of concentrated Sulphuric (VI) acid in	the above preparation?
		(1 mark)
iii)	Suggest an improvement that can be made in the combustion tube to mal	ke the preparation more
	efficient and safer.	(1 mark)
iv)	Name substance C prepared in this reaction.	(1 mark)
v)	State any one industrial use of substance C.	(1 mark)



b) Using	an equation explain the observation that would be made when	concentrated Sulphuric (VI) acid
is added	to glass beaker containing table sugar.	(2 marks)
c) The di	agrams below represent two allotropes of sulphur.	
	X	Y
i)	What are allotropes?	(1 mark)
ii)	Name the two allotropes labeled \mathbf{X} and \mathbf{Y} .	(1 mark)
	XY	
iii)	Briefly explain how plastic sulphur is formed.	(2 marks)

6. a) The set-up **below** was used to prepare and collect gas **R**. During the experiment cleaned magnesium ribbon was strongly heated before heating the wet glass wool.

(1)	Name gas K	(1 mark)
(ii)	State one observation that would be noted in the reaction tube.	(1 mark)
(iii)	Write the equation for the reaction in the reaction tube.	(1 mark)
(iv)	State one industrial use of the solid product formed in the reaction tube.	
(v)	What precaution should be taken at the end of experiment?	(1 mark)



((vi) At the end of the experiment 96.0cm^3 of gas R were collected at 10°C pressure. (Mg = 24, M.G.V = 22.4 at s.t.p).	C and 1 atmosphere
	Determine the volume gas R would occupy at s.t.p?	(2 marks)
*	v drops of freshly prepared iron (II) sulphate solution were added to potassiume. Concentrated Sulphuric (VI) acid was then carefully added to the mixture at	
i)	State the observation that was made.	(1 mark)
;;)	What name is given to the experiment described above?	
ii)	What name is given to the experiment described above?	(1 mark)
	a fuels burn in the internal combustion engines at high temperatures, one of the (II) oxide.	e products formed is
i)	Explain why nitrogen (II) oxide is not formed at room temperature.	(1 mark)
		•••••
ii)	Describe how formation of nitrogen (II) oxide in the internal combustic gaseous pollution.	on engines leads to (1 mark)
		•••••

7. a) The set up below is for the electrolysis of copper (II) sulphate solution using graphite rods as electrodes. Study it and answer the questions that follow.

1)	identify gas A.	(1 mark)
ii)	Describe how you can obtain the mass of the solid deposited at electrode X.	(2 marks)
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
iii)	State two changes that occur in the electrolyte after the experiment.	(2 marks)
		• • • • • • • • • • • • • • • • • • • •
		•••••

b) A current of **1.5A** was passed through the solution of copper (II) sulphate for **50** minutes.

$$. (M.G.V. r.t.p. = 24000cm^3, IF = 96500C).$$

i. Determine the quantity of electricity used.

(1 mark)

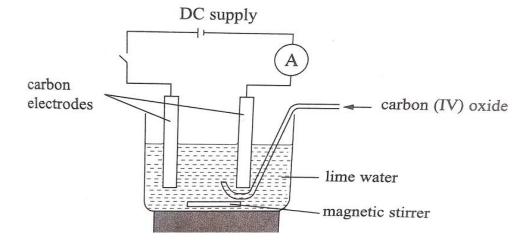
ii. Calculate the volume of the gas produced at the anode.

(2 marks)

c) Below are standard electrode potentials of some elements.

$$E^{o}(V)$$

$$2H^{+}(aq) + 2e^{-}$$
 $H_{2}(g)$ 0.00


$$Ag^{+}(aq) + e^{-}$$
 $Ag(s)$ $+0.79$

Draw a well labeled diagram for the electrochemical cell obtained by joining hydrogen and zinc half cells. (3 marks)

d) Carbon (IV) oxide from a generator was passed into a 20cm³ of lime water and conductivity of the solution determined as shown below.

The conductivity of the solution decreased then after some time it started increasing, but did not reach	the
initial conductivity of lime water. Explain these observations. (2 ma	rks)
	••••
	· • • • •
	· • • • •
	.
	· • • •
	.

THS IS THE LAST PRINTED PAGE

BLANK PAGE

