CALCULUS.

Mixed Exercise.

1. Find
$$\frac{dy}{dx}$$
 if $y = (x^2 + 1)^2$.

$$\mathbf{v} = (\mathbf{x}^2 + \mathbf{1})^2$$

$$y = (x^2 + 1)(x^2 + 1)$$

$$y = (x^2)^2 + 2(x^2)(1) + (1)^2$$

$$y = x^4 + 2x^2 + 1$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 4x^3 + 4x.$$

2. Find the equation of the tangent to the curve $y = 6x^2 - x - 4$ at the point A(1,1).

Curve;
$$y = 6x^2 - x - 4$$
 at A(1, 1)

Gradient of tangent;

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 12x - 1$$

$$at x = 1$$

$$M_1 = 12(1) - 1$$

$$= 11$$

For the tangent $M_1 = M_2$

By taking Point A(1, 1)

$$M_2 = 11$$

and Point (x, y)

$$\frac{y-1}{x-1}=11$$

$$y = 11x - 11 + 1$$

$$y = 11x - 10.$$

3. Find the equation of the tangent to the curve $y = \frac{1}{3}x^3 - \frac{3}{2}x^2 + x - 2$ at a point where x = 1. Give your answer in the form ax + by + c = 0 where a, b and c are integers.

Curve;
$$y = \frac{1}{3}x^3 - \frac{3}{2}x^2 + x - 2$$

at $x = 1$.

Gradient of tangent;

$$\frac{dy}{dx} = x^2 - 3x + 1$$

at x = 1

$$M_1 = (1)^2 - 3(1) + 1$$

= -1

$$y = \frac{1}{3}(1)^3 - \frac{3}{2}(1)^2 + (1) - 2$$

$$y=-\frac{13}{6}$$

Point of tanging $\left(1, -\frac{13}{6}\right)$

Equation;

$$\frac{y + \frac{13}{6}}{x - 1} = -1$$

$$y = -x + 1 - \frac{13}{6}$$

$$6y = -6x - 7$$

$$6y + 6x + 7 = 0.$$

4. The gradient of the tangent to the curve $y = ax^3 + bx^2$ at the point A(-1, -5) is 12. Find the value a and b.

$$y = ax^3 + bx^2$$

at
$$A(-1, -5)$$

$$x = -1$$
 and $y = -5$

$$-a + 5 = -5 \dots eq. 1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3ax^2 + 2bx = 12$$

at
$$x = -1$$

$$3a - 2b = 12 \dots eq. 2$$

$$\mathbf{b} = \mathbf{a} - \mathbf{5}$$

we have;

$$3a - 2(a - 5) = 12$$

$$3a - 2a + 10 = 12$$

$$a = 12 - 10$$

$$a = 2$$

$$b = 2 - 5$$

$$b = -3$$

$$a = 2$$

$$b = -3$$

5. Find the equation of the normal to the curve $y = \frac{1}{3}x^3 - \frac{1}{2}x^2 + 3x + 8$ at its y - intercept.

$$y = \frac{1}{3}x^3 - \frac{1}{2}x^2 + 3x + 8$$

at y - intercept, x = 0

$$y = \frac{1}{3}(0)^3 - \frac{1}{2}(0)^2 + 3(0) + 8$$
$$y = 8$$

Point of tanging A(0,8)

Gradient of the tangent;

$$\frac{dy}{dx} = x^2 - x + 3$$

$$at x = 0$$

$$\mathbf{M_1} = (\mathbf{0})^2 - (\mathbf{0}) + \mathbf{3}$$

$$M_1 = 3$$

For normal;

$$\mathbf{M_1M_2} = -1$$

$$\mathbf{M}_2 = -\frac{1}{3}$$

Taking Point;

$$A(0,8)$$
, (x,y) and $M_2 = -\frac{1}{3}$

$$\frac{y-8}{x-0}=-\frac{1}{3}$$

$$y=-\frac{1}{3}x+8$$

$$3\mathbf{v} = -\mathbf{x} + 2\mathbf{4}.$$

6. The gradient of the of the tangent to the curve $y = ax^3 + \frac{1}{2}x^2 - 3x + 7$ at a point where x = 2 is 5. Find the value of a.

$$y = ax^3 + \frac{1}{2}x^2 - 3x + 7$$

at
$$x = 2$$
, $\frac{dy}{dx} = 5$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3ax^2 + x - 3$$

at
$$x = 2$$
;

$$3a(2)^2 + (2) - 3 = 5$$

$$12a - 1 = 5$$

$$12a = 6$$

$$a=\frac{1}{2}.$$

7. Find the equation of the normal to the curve
$$y = \frac{x(9x^2-1)}{3x+1}$$
 at a point where $x = 2$.

$$y = \frac{x(9x^2 - 1)}{3x + 1}$$

$$y = \frac{x(3x - 1)(3x + 1)}{(3x + 1)}$$

$$y = x(3x - 1)$$

$$y = 3x^2 - x$$

$$at x = 2$$

$$y = 3(2)^2 - (2)$$

y = 10

A(2, 10)

Gradient of Tangent;

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 6x - 1$$

$$at x = 2$$

$$\mathbf{M_1} = \mathbf{6(2)} - \mathbf{1}$$

Gradient of normal;

$$M_1M_2=-1$$

$$M_2 = -\frac{1}{11}$$

Equation;

$$\frac{y-10}{x-2} = -\frac{1}{11}$$

$$11y - 110 = -x + 2$$

$$11y + x - 112 = 0.$$

8. Determine the point on the curve $y = \frac{1}{2}x^2 + 4$ at which the gradient is 8 hence find the equation of the normal to the curve at this point.

$$y = \frac{1}{2}x^2 + 4$$

$$\frac{dy}{dx} = x$$

$$x = 8$$

$$y = \frac{1}{2}(8)^2 + 4$$

$$=36$$

Point of tanging;

Gradient of normal;

$$\mathbf{M_1M_2} = -\mathbf{1}$$

$$M_2 = -\frac{1}{8}$$

Eqaution;

$$\frac{y-36}{x-8}=-\frac{1}{8}$$

$$8y - 288 = -x + 8$$

$$8y + x - 296 = 0.$$

9. Find the equation of the tangent to the curve $y = x^2 - 3x + 7$ at a point where the gradient is 5.

$$y = x^{2} - 3x + 7$$

$$\frac{dy}{dx} = 2x - 3$$

$$= 5$$

$$2x-3=5$$

$$2x = 8$$

$$x = 4$$

$$y = (4)^2 - 3(4) + 7$$
$$= 11$$

Point of tanging;

Equation;

$$\frac{y-11}{x-4}=5$$

$$y = 5x - 20 + 11$$

$$y = 5x - 9.$$

10. Find the equation of the tangents to the curve $y = 5x - x^2$ at the points where it intersect with the line y = x.

$$y = 5x - x^2 \dots eq. 1$$

 $y = x \dots eq. 2$

Substituting eq. 2 into eq. 1

$$5x - x^{2} = x$$

$$x^{2} - 4x = 0$$

$$x(x - 4) = 0$$

$$x = 0$$

or
$$x - 4 = 0$$

$$\mathbf{x} = \mathbf{4}$$

when x = 0;

$$y = 5(0) - (0)^2$$

$$y = 0$$

Point of tanging;

A(0,0)

Gradient of the tangent;

$$\frac{dy}{dx} = 5 - 2x$$

$$at x = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5 - 2(0)$$

Equation;

$$\frac{y-0}{x-0}=5$$

$$y = 5x \dots 1^{st}$$
 eaquation.

or;

at
$$x = 4$$

$$y = 5(4) - (4)^2$$

Point of tanging;

Gradient of the tangent;

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5 - 2x$$

at
$$x = 4$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5 - 2(4)$$

$$=$$
 -3

Equation;

$$\frac{y-4}{x-4}=-3$$

$$y = -3x + 12 + 4$$

$$y = -3x + 16 \dots 2^{nd}$$
 eaquation.

11. Find the coordinates of the stationary points of the curve $y = -x^3 + 3x^2 + 9x - 6$.

$$y = -x^3 + 3x^2 + 9x - 6$$

At stationary point;

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = -3x^2 + 6x + 9$$

$$-3x^2 + 6x + 9 = 0$$

$$x = \frac{-6 \pm \sqrt{(-6)^2 - 4(-3)(9)}}{2(-3)}$$

$$x = \frac{-6 \pm 12}{-6}$$

$$x = -1 \text{ or } x = 3$$

when
$$x = -1$$

$$y = -(-1)^3 + 3(-1)^2 + 9(-1) - 6$$
$$= -11$$

Turning point (-1, -11)

when
$$x = 3$$

$$y = -(3)^3 + 3(3)^2 + 9(3) - 6$$
$$= 21$$

Turning point (3, 21).

12. Find the coordinates of the stationary points of the curve $y = 2x^3 - 3x^2 - 36x - 8$.

$$y = 2x^3 - 3x^2 - 36x - 8$$

At stationary point $\frac{dy}{dx} = 0$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 6x^2 - 6x - 36$$

$$6x^2 - 6x - 36 = 0$$

$$x^2 - x - 6 = 0$$

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-6)}}{2(1)}$$

$$x = \frac{1 \pm 5}{2}$$

$$x = 3 \text{ or } x = -2$$

when
$$x = 3$$

$$y = 6(3)^2 - 6(3) - 36$$

$$= -89$$

Turnimg point (3, -89)

when
$$x = -2$$

$$y = 6(-2)^2 - 6(-2) - 36$$

$$=36$$

Turnimg point (-2,36)

- 13. Given that $y = x^3 4x$, find;
 - (a) The intercepts of the curve.

(b) The stationary points of the curve.

at stationary point
$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = 3x^2 - 4$$

$$3x^2 - 4 = 0$$

$$3x^2 = 4$$

$$x^2 = \frac{4}{3}$$

$$x = \sqrt{\frac{4}{3}}$$

$$x = \pm \frac{2}{\sqrt{3}}$$
when $x = \frac{2}{\sqrt{3}}$

$$y = \left(\frac{2}{\sqrt{3}}\right)^3 - 4\left(\frac{2}{\sqrt{3}}\right)$$
$$= \frac{8}{3\sqrt{3}} - 4\left(\frac{2}{\sqrt{3}}\right)$$
$$= 1.5396$$

Turning point (1.1547, 1.5396)

when
$$x = -\frac{2}{\sqrt{3}}$$

$$y = \left(-\frac{2}{\sqrt{3}}\right)^3 - 4\left(-\frac{2}{\sqrt{3}}\right)$$

$$= -\frac{8}{3\sqrt{3}} + 4\left(\frac{2}{\sqrt{3}}\right)$$

$$= 3.0792$$

Turning point (-1.1547, 3.0792)

14. Investigate the stationary points for the curve $y = 2x^3 + 5$.

$$\mathbf{v} = 2\mathbf{x}^3 + \mathbf{5}$$

At stationary point;

$$\frac{\mathrm{d}y}{\mathrm{d}x}=0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2$$

$$6x^2=0$$

$$x^2 = 0$$

$$\mathbf{x} = \pm \mathbf{0}$$

At
$$x = 0$$
,

$$y = 2(0)^3 + 5$$

$$\mathbf{y} = \mathbf{0}$$

Coordinates (0, 5)

Nature of turning point;

x	-1	0	1
$\frac{dy}{dx} = 6x^2$	6	0	6
Nature			

Point (0,5) is a point of inflection

15. Identify the stationary points of the curve $y = 2x^2 - x^4 + 2$.

$$y = 2x^2 - x^4 + 2$$

At stationary point;

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

$$\frac{dy}{dx} = 4x - 4x^3$$

$$4x - 4x^3 = 0$$

$$4x(1-x^2)=0$$

$$4x(1-x)(1+x) = 0$$

Either
$$x = 0$$
 or $x = -1$ or $x = 1$

$$at x = 0$$

$$y = 2(0)^2 - (0)^4 + 2$$

$$y = 2$$

Turning point (0, 2)

At
$$x = -1$$

$$y = 2(-1)^2 - (-1)^4 + 2$$
$$= 3$$

Turning point (-1,3)

$$At x = 1$$

$$y = 2(1)^2 - (1)^4 + 2$$
$$= 1$$

Turning point (1,3).

16. The gradient of a curve is given by $\frac{dy}{dx} = 3x^2 - 8x + 2$. If the curve passes through a point (2,5), find its equation.

$$\frac{dy}{dx} = 3x^2 - 8x + 2$$

$$y = \int (3x^2 - 8x + 2)dx$$

$$y = x^3 - 4x^2 + 2x + c$$
At (2,5)

$$5 = (2)^{3} - 4(2)^{2} + 2(2) + c$$

$$c = 5 + 4$$

$$c = 9$$

$$y = x^{3} - 4x^{2} + 2x + 5.$$

17. The gradient of a curve is given by $\frac{dy}{dx} = 4x - 2$. If the minimum value of the curve is 7, find its equation.

$$\frac{dy}{dx} = 4x - 2$$

$$y = \int (4x - 2)dx$$

$$y = 2x^2 - 2x + c$$
At minimu point $\frac{dy}{dx} = 0$

$$4x - 2 = 0$$

$$4x = 2$$

$$x = \frac{1}{2}$$

at
$$x = \frac{1}{2}$$
, $y = 7$

$$7 = 2\left(\frac{1}{2}\right)^{2} - 2\left(\frac{1}{2}\right) + c$$

$$7 = -\frac{1}{2} + c$$

$$c = 7\frac{1}{2}$$

$$y = 2x^{2} - 2x + 7\frac{1}{2}$$

18. Evaluate $\int_{t=2}^{4} (3t^2 + 4t + 10) dt$.

$$\begin{split} \int_{t=4}^4 (t^3 + 2t^2 + 10t) dt \\ &= [t^3 + 2t^2 + 10]_2^4 \\ &= [(4)^3 + 2(4)^2 + 10(4)] - [(2)^3 + 2(2)^2 + 10(2)] \end{split}$$

= 136 - 36= 100 square units.

19. Find the value of a if $\int_a^3 (2x + 4) dx = 25$.

$$\int_{a}^{3} (2x+4) dx = 25$$
$$[x^{2}+4x]_{a}^{3} = 25$$
$$[(3)^{2}+4(3)] - [(a)^{2}+4(a)] = 25$$
$$21 - a^{2} - 4a = 25$$

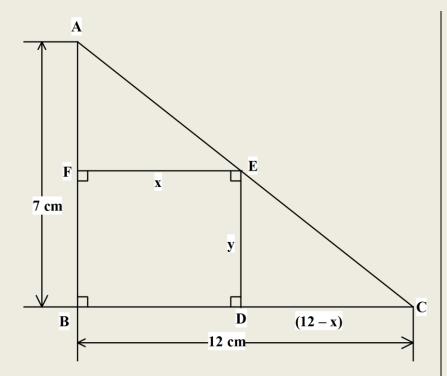
$$a^{2} + 4a + 4 = 0$$

$$a = \frac{-4 \pm \sqrt{(4)^{2} - 4(1)(4)}}{2(1)}$$

$$a = \frac{-4 \pm 0}{2}$$

$$= -2.$$

20. A rectangle with maximum possible area is inscribed in a right angle triangle with base 12 cm and height 7 cm. Determine the dimensions of the rectangle.



Cosider AABC and AEDC

$$\frac{AB}{ED} = \frac{BC}{DC}$$

$$\frac{7}{y}=\frac{12}{(12-x)}$$

$$12y = 84 - 7x$$

$$y=7-\frac{7}{12}x\ldots\ldots eq.\,1$$

But area of rec. FEDB

$$\mathbf{A} = \mathbf{x}\mathbf{y}$$

$$A = x \left(7 - \frac{7}{12}x\right)$$

$$A=7x-\frac{7}{12}x^2.$$

At max. area
$$\frac{dA}{dx} = 0$$

$$7 - \frac{7}{6}x = 0$$

$$\frac{7}{6}x = 7$$

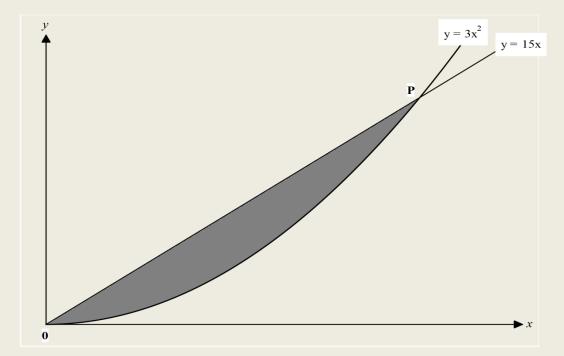
$$x = 6 cm$$

$$y = 7 - \frac{7}{12}(6)$$

$$y = 3.5 cm.$$

Area Under a Curve.

1. In the figure below, the shaded region is bounded between the line y = 15x and the curve $y = 3x^2$.



(a) Determine the coordinates of P.

(3mks)

At O and O;

 $3x^2 = 15x$ (Point of intersection)

$$3x^2 - 15x = 0$$

$$3x(x-5)=0$$

$$3x = 0$$

$$\mathbf{x} = \mathbf{0}$$

$$\mathbf{x} - \mathbf{5} = \mathbf{0}$$

$$x = 5$$

when
$$x = 5$$
;

$$y = 15(5)$$

(b) By integration, determine the area of the shaded region.

Area of the shaded;

$$= \int_{x=0}^{5} (15x) dx - \int_{x=0}^{5} (3x^{2}) dx$$
$$= \left[\frac{15}{2} x^{2} \right]_{0}^{5} - [x^{3}]_{0}^{5}$$

$$= \left[\left(\frac{15}{2} (5)^2 \right) - \left(\frac{15}{2} (0)^2 \right) \right] - [5^3 - 0^3]$$

$$= 187.5 - 125$$

$$= 62.5 \text{ sq. units.}$$

(c) Estimate the area of the shaded region using trapezoidal rule with 5 strips. (4mks)

Area under y = 15x;

$$h=\frac{5-0}{5}$$

= 1 unit.

X	0	1	2	3	4	5
y	0	15	30	45	60	75

Area;

$$= \frac{1}{2}[(0+75) + 2(15+30+45+60)]$$
$$= \frac{1}{2}[75+300]$$

= 187.5 square units

Area under $y = 3x^2$.

			2		4	5
y	0	3	12	27	45	75

Area;

$$= \frac{1}{2}[(0+75) + 2(3+12+27+45)]$$
$$= \frac{1}{2}[75+180]$$

Area of the shaded region;

= 127.5 sq. units

$$= 187.5 - 127.5$$

= 60 sq. units.

2. (a) complete the table below for the function $y = x^2 - 3x + 6$ in the range $-2 \le x \le 8$. (2mks)

X	-2	-1	0	1	2	3	4	5	6	7	8
y	16	10	6	4	4	6	10	16	24	34	46

(b) Use the trapezium rule with 5 strips to estimate the area bounded by the curve $y = x^2 - 3x + 6$ in the range $-2 \le x \le 8$ and the x - axis. (3mks)

$$h = \frac{8 - (-2)}{5}$$

$$= 2$$

$$= 1\{62 + 88\}$$

$$= 150 \text{ sq. units.}$$

(c) Use the mid-ordinate with 5 strips to estimate the area bounded by the curve $y = x^2 - 3x + 6$ in the range $-2 \le x \le 8$ and the x - axis. (2mks)

$$h = \frac{8 - (-2)}{5}$$

$$= 2$$

$$A = 2(10 + 4 + 6 + 6 + 16 + 34)$$

$$= 140 \text{ sq. units.}$$

(d) By integration, determine the actual area bounded by the curve $y = x^2 - 3x + 6$ in the range $-2 \le x \le 8$ and the x - axis. (3mks)

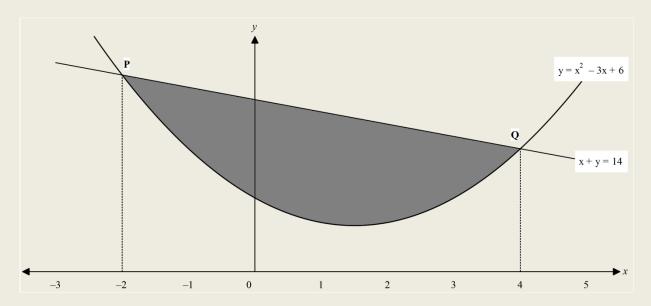
$$A = \int_{x=-2}^{8} (x^2 - 3x + 6) dx$$

$$= \left[\frac{1}{3} x^3 - \frac{3}{2} x^2 + 6x \right]_{-2}^{8}$$

$$= \left[\frac{1}{3} (8)^3 - \frac{3}{2} (8)^2 + 6(8) \right] - \left[\frac{1}{3} (-2)^3 - \frac{3}{2} (-2)^2 + 6(-2) \right]$$

$$= 143 \frac{1}{3} \text{ sq. units.}$$

3. The diagram shows a sketch of a curve $y = x^2 - 3x + 6$ intersecting with the line x + y = 14 for $-2 \le x \le 4$ at points P and Q.



(a) Find the coordinates of points P and Q.

(1mk)

At points of intersection;

$$x^{2} - 3x + 6 = -x + 14$$

At P, $x = -2$
 $y = -(-2) + 14$
 $= 16$
 $P(-2, 16)$

$$\mathbf{X} = \mathbf{4}$$

$$\mathbf{Y} = -\mathbf{4} + \mathbf{14}$$

$$Q(4,10).$$

(b) Fill the table below for the values of y for $y = x^2 - 3x + 6$.

(2mks)

X	-2	-1	0	1	2	3	4
y	16	10	6	4	4	6	10

(c) Determine the area bounded by the curve $y = x^2 - 3x + 6$ and the line x + y = 14, using trapezium rule with 6 strips. (4mks)

area of
$$y = x^2 - 3x + 6$$

x	-2	-1	0	1	2	3	4		
y	16	10	6	4	4	6	10		
$\mathbf{h} = \frac{4 - (-2)}{6}$									
_ 1									

$$A = \frac{1}{2}[(16+10) + 2(10+6+4+4+6)]$$

$$= \frac{1}{2}(26+60)$$

$$= 43 \text{ sq. unit}$$

Area of
$$y = -x + 14$$
.

	X	-2	-1	0	1	2	3	4			
	y	16	15	14	13	12	11	10			
A =	$A = \frac{1}{2}[(16+10) + 2(15+14+13+12+11)]$										
	$=\frac{1}{2}(26+130)$										
			_	- 78 s	sa. un	iit					

Shaded area;

$$= 78 - 43$$

= 35 sq. units.

(d) Calculate the exact area of the shaded region.

Area under
$$y = 14 - x$$

$$A = \int_{x=-2}^{4} (14 - x) dx$$

$$= \left[14x - \frac{1}{2}x^{2} \right]_{-2}^{4}$$

$$= \left[14(4) - \frac{1}{2}(4)^{2} \right] - \left[14(-2) - \frac{1}{2}(-2)^{2} \right]$$

$$= 48 - (-30)$$

$$= 78 \text{ sq. units}$$

Area under
$$y = x^2 - 3x + 6$$

$$A = \int_{x=-2}^{4} (x^2 - 3x + 6) dx$$

$$= \left[\frac{1}{3} x^3 - \frac{3}{2} x^2 + 6x \right]_{-2}^{4}$$

$$= \left[\frac{1}{3} (4)^3 - \frac{3}{2} (4)^2 + 6(4) \right] - \left[\frac{1}{3} (-2)^3 - \frac{3}{2} (-2)^2 + 6(-2) \right]$$

$$= \frac{64}{3} - \left[-\frac{62}{3} \right]$$

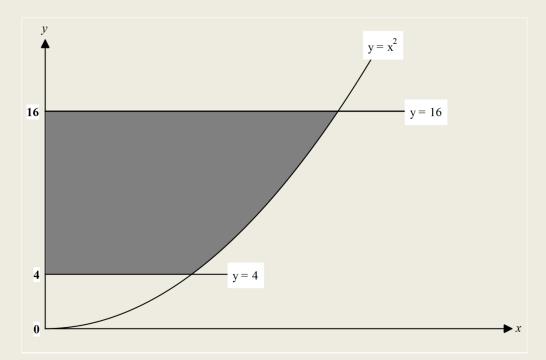
$$= 42 \text{ sq. units}$$

Area of shaded region;

$$= 78 - 42$$

= 36 sq. units.

4. The shaded region in the figure below is bounded by the curve $y = x^2$ and the line y = 4 and y = 16.



(a) Calculate the exact area of the shaded region.

$$y = x^2$$

$$\mathbf{x} = \sqrt{\mathbf{y}}$$

$$x=y^{\frac{1}{2}}$$

Area of shaded;

$$=\int_{y=4}^{16}\left(y^{\frac{1}{2}}\right)dy$$

$$= \left[\frac{2}{3}y^{\frac{3}{2}}\right]_4^{16}$$

$$= \left[\frac{2}{3} (16)^{\frac{3}{2}} \right] - \left(\frac{2}{3} (4)^{\frac{3}{2}} \right)$$

$$=42\frac{2}{3}-5\frac{1}{3}$$

$$=37\frac{1}{3}$$
 sq. units.

- (b) Estimate the area of the shaded region using;
 - i. Trapezium rule and a height of 1 unit.

At
$$P, y = 4$$

$$4 = x^2$$

$$x = \sqrt{4}$$

$$\mathbf{x} = \pm \mathbf{2}$$

at
$$Q$$
, $y = 16$

$$x^2 = 16$$

$$x = \sqrt{16}$$

$$x = \pm 4$$

Area under line y

x	0	1	2
y ₁	16	16	16
y ₂	4	4	4
$y_1 - y_2$	12	12	12

(3mks)

Area =
$$\frac{1}{2}[(12 + 12) + 2(12)]$$

= 24 sq. units

Area from $2 \le x \le 4$.

X	2	3	4
y ₁	16	16	16
y ₂	4	9	16
$y_1 - y_2$	12	7	0

Area =
$$\frac{1}{2}[(12+0)+2(7)]$$

Total Area of shaded region;

$$= 24 + 13$$

ii. Mid – ordinate rule and height of 1 unit.

(3mks)

Area between lines;

$$x = 16$$

and
$$y = 4$$

from

$$0 \le x \le 2$$
.

x	0.5	1.5
y ₁	16	16
y ₂	4	4
$y_1 - y_2$	12	12

Area =
$$1(12 + 12)$$

= **24** sq. units.

Area between lines;

$$y = 16$$
 and $y = x^2$

from $2 \le x \le 4$.

x	2.5	3.5
y ₁	16	16
y ₂	6.25	12.25
$y_1 - y_2$	9.75	3.75

$$Area = 1(9.75 + 3.75)$$

= 13.5 sq. units

Total shaded area;

$$= 24 + 13.5$$

$$=37\frac{1}{2}$$
 sq. units.

5. (a) complete the table below for $y=3\sin 2x$ in the range $0^c \le x \le \frac{\pi^c}{2}$ to 4 significant figures.

x ^c	0	$\frac{1}{12}\pi$	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{5}{12}\pi$	$\frac{1}{2}\pi$
у	0.0000	1.5000	2.5981	3.0000	2.5981	1.5000	0.0000

- (b) Estimate the area of bounded by the curve $y = 3 \sin 2x$ for $0^c \le x \le \frac{\pi^c}{2}$ using;
 - Trapezium rule and 7 ordinates.

No. of strips;

$$h = \frac{\frac{1}{2}\pi^c - 0}{6}$$

$$=\frac{1}{12}\pi^{c}$$

$$A = \frac{1}{24} \pi^c [(0+0) + 2(1.5 + 2.598 + 3 + 2.598 + 1.5)]$$

$$=\frac{1}{24}\pi^c(22.392)$$

$$= 0.933\pi^{c}$$

$$= 2.9311 \text{ sq. units.}$$

Mid – ordinate rule and 3 strips.

$$h = \frac{\frac{1}{2}\pi^c - 0}{3}$$

$$=\frac{1}{6}\pi^{c}$$

$$A = \frac{1}{6}\pi^{c}(1.5 + 3 + 1.5)$$

$$=\frac{1}{6}\pi^{c}\times 6$$

$$=\pi^{c}$$

(c) Given that $\int_0^{\frac{1}{2}\pi} (3\sin 2x) dx = 3$, calculate the error in (b)(i) and (ii) above. (2mks)

$$\int_0^{\frac{1}{2}\pi} (3\sin 2x) dx = 3$$

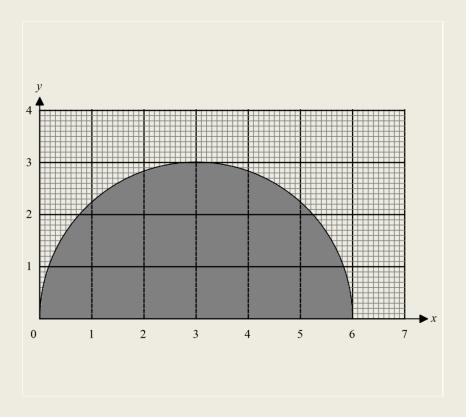
$$Error = \frac{3-2.9311}{3}$$

$$= 0.02297$$

Error =
$$\frac{3 - 3.1416}{3}$$

$$= 0.0472$$

6. The figure below shows a semi – circle centre (3,0) and radius 3 units.



- (a) Estimate the area of the semi circle using;
 - i. Trapezoidal rule and 6 strips.

x	0	1	2	3	4	5	6		
y	0	2.2	2.8	3	2.8	2.2	0		
$h = \frac{6 - 0}{6}$									
= 1 unit									

(4mks)

$$\frac{1}{2}[(0+)+2(2.2+2.8+3+2.8+2.2)]$$

$$=\frac{1}{2}(26)$$
= 13 sq. units.

ii. Mid – ordinate rule and 6 strips.

$$h = \frac{6 - 0}{6}$$
$$= 1 \text{ unit}$$

(4mks)

$$A = 1(1.6 + 2.6 + 2.95 + 2.95 + 2.6 + 1.6)$$

= 14.3 sq. units.

(b) Find, in terms of π , the error in the area of the semi – circle when mid – ordinate rule is used as in (a) (ii) above. (2mks)

$$A=\frac{1}{2}\pi r^2$$

$$=\frac{\pi(3)^2}{2}$$

$$=\frac{9}{2}\pi$$

Error absolute;

$$= \left| \frac{9}{2}\pi - 14.3 \right|.$$

- 7. A region **R** is bounded by the curve $y = x^3$, the x axis and the ordinates x = -3 and x = 3. Determine;
 - (a) The exact area of the region \mathbf{R} .

(4mks)

Points where the curve cuts x - axis;

$$y = 0$$

$$\mathbf{x} = \mathbf{0}$$

so we integrate from;

then from 0 to 3

$$A = 2 \times \int_{-3}^{0} (x^3) dx$$

$$= 2 \times \left[\frac{1}{4}y^4\right]_{-3}^{0}$$

$$= 2\left\{\left[\frac{1}{4}(0)^4\right] - \left[\frac{1}{4}(-3)^4\right]\right\}$$

$$= 2 \times 20\frac{1}{4}$$

$$= 40\frac{1}{2} \text{ sq. units.}$$

(b) Estimate the area of the region $\bf R$ using the mid – ordinate rule and 6 ordinates. (4mks)

$$h=\frac{3-(-3)}{6}$$

= 1 unit.

X	-2.5	-1.5	-0.5	0.5	1.5	2.5
y	-15.625	-3.375	-0.125	0.125	3.375	15.625

A = 1(15.626 + 3.375 + 0.125 + 0.125 + 3.375 + 15.625)

$$=38\frac{1}{4} \text{ sq. units.}$$

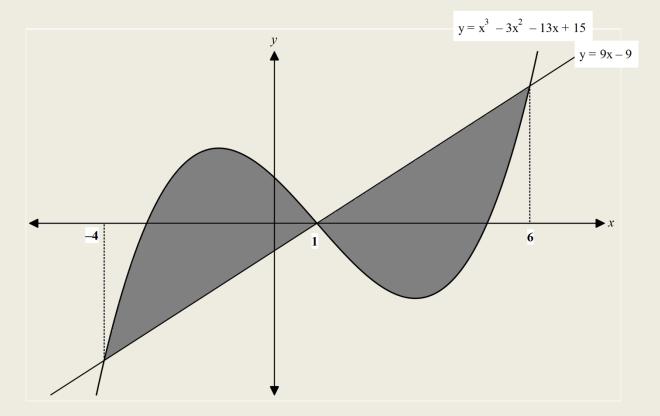
(c) Calculate the percentage error in the area of
$$\mathbf{R}$$
 in (b) above.

$$=5\frac{5}{9}\%.$$

(2mks)

% error;
$$= \left(\frac{40\frac{1}{2} - 38\frac{1}{4}}{40\frac{1}{2}}\right) 100$$

8. In the figure below, the shaded region is bounded by the curve $y = x^3 - 3x^2 - 13x + 15$ and the straight line y = 9x - 9.



(a) Calculate the exact area of the shaded region.

$$= 2 \left\{ \int_{1}^{6} (9x - 9) dx - \int_{1}^{6} (x^{3} - 3x^{2} - 13x + 15) dx \right\}$$
$$= 2 \left\{ \left[\frac{9}{2}x^{2} - 9x \right]_{-3}^{0} + \left[\frac{x^{4}}{4} - x^{3} - \frac{13}{2}x^{2} + 15x \right]_{-3}^{0} \right\}$$

(4mks)

$$= 2 \left\{ \frac{225}{2} - \left(-\frac{175}{4} \right) \right\}$$

= 312.5 sq. units.

(b) Estimate the area of the shaded region using trapezium rule with 10 strips.

(4mks)

Consider from intersection point towards R. H. S.

For the curve
$$y = x^3 - 3x^2 - 13x + 15$$
.

X	1	2	3	4	5	6
y	0	-15	-24	-21	0	0

Consider from intersection point towards R. H. S.

For the curve y = 9x - 9.

X	1	2	3	4	5
y	0	9	18	27	36

Taking absolute value for y_T

$$y_1 = (0+0)$$

= 0
 $y_2 = (15+9)$

$$= 24$$

$$y_3 = (24 + 18)$$

= 42

$$y_4 = (21 + 27)$$

$$y_5 = (0 + 36)$$

$$y_6 = 0$$

$$A = 2\left[\frac{1}{2}\{(0+0) + 2(24+42+48+36)\}\right]$$

$$= 2[0+150]$$

$$= 300 \text{ sq. units.}$$

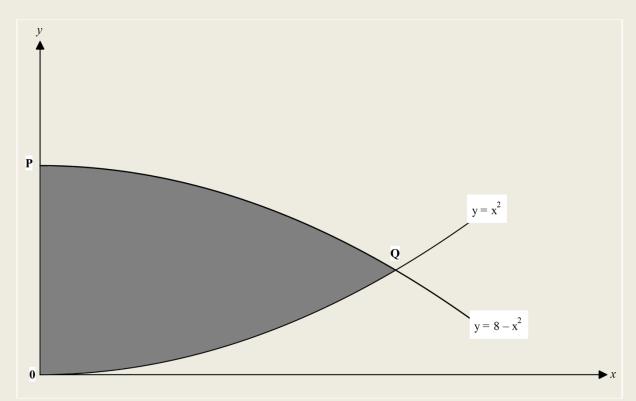
(c) Hence determine the percentage error in the area in (b) above.

(2mks)

% error;

$$= \left(\frac{312.5 - 300}{312.5}\right) 100$$

9. In the figure below, the curve $y = x^2$ and $y = 8 - x^2$ intersect at Q.



(a) Determine the coordinates of Q.

(1mk)

At point of intersection, Q;

$$x^2 = 8 - x^2$$

$$2x^2 = 8$$

$$x^2 = 4$$

$$\mathbf{x} = \sqrt{4}$$

$$x = \pm 2$$

Point:

$$y = 8 - (2)^2$$

Q(2, 4)

(b) By integration, calculate the area of the shaded region.

$$y = 8 - x^{2}$$

$$A = \int_{0}^{2} (8 - x^{2}) dx$$

$$= \left[8x - \frac{1}{3}x^{3} \right]_{0}^{2}$$

$$= \left[8(2) - \frac{1}{3}(2)^{3} \right] - \left[8(0) - \frac{1}{3}(0)^{3} \right]$$

$$= \frac{40}{3} - 0$$

$$= \frac{40}{3}$$

Area under the curve;

$$y = x^{2}$$

$$= \int_{0}^{2} (x^{2}) dx$$

$$= \left[\frac{1}{3}x^{3}\right]_{0}^{2}$$

$$= \left[\frac{1}{3}(2)^{3}\right] - \left[\frac{1}{3}(0)^{3}\right]$$

$$= \frac{8}{3}$$

Area of the shaded region;

$$= \frac{40}{3} - \frac{8}{3}$$
= $10\frac{2}{3}$ sq. units.

- (c) Estimate the area of the shaded region using;
 - i. Trapezium rule with 4 strips.

$$h = \frac{2-0}{4}$$

= 0.5 units.

X	0	0.5	1	1.5	2
$\mathbf{y_1} = 8 - \mathbf{x^2}$	8	7.75	7	5.75	4
$y_2 = x^2$	0	0.25	1	2.25	4

Area under the curve;

$$y = 8 - x^{2}$$

$$= \frac{0.5}{2}[(8+4) + 2(7.75 + 7 + 5.75)]$$

(3mks)

Area under the curve;

$$y = x^{2}$$

$$= \frac{0.5}{2}[(0+4) + 2(0.25 + 1 + 2.25)]$$

$$= 2.75 \text{ sq. units}$$

Area of the shaded region;

$$= 13.25 - 2.75$$
$$= 10\frac{1}{2} \text{ sq. units.}$$

ii. Mid – ordinate rule with 4 strips.

$$h=\frac{2-0}{4}$$

= 0.5 units

X	0.25	0.75	1.25	1.75
$y_1 = 8 - x^2$	7.9375	7.4375	6.4375	4.9375
$y_2 = x^2$	0.0625	0.5625	1.5625	3.0625

Area under curve;

$$y = 8 - x^2$$

$$= 0.5(7.9375 + 7.4375 + 6.4375 + 4.9373)$$
$$= 0.5 \times 26.75$$

(3mks)

$$= 13.375$$
 sq. units

Area under curve;

$$y = x^2$$

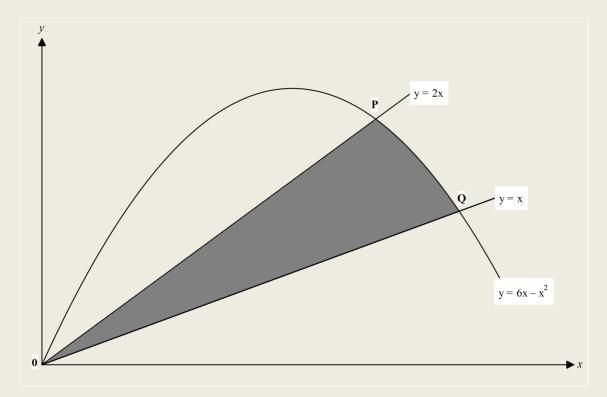
$$= 0.5(0.0625 + 0.5625 + 1.5625 + 3.0625)$$

Area of the shaded region;

$$= 13.375 - 2.625$$

$$=10\frac{3}{4} \text{ sq. units.}$$

10. In the figure below, the shaded region is bounded by the lines y = 2x, y = x and the curve $y = 6x - x^2$. He two straight lines intersect the curve at points P and Q respectively.



(a) Determine the coordinates of points P and Q.

Points of intersection;

$$6x - x^2 = 2x$$

$$x^2 - 4x = 0$$

$$x(x-4)=0$$

$$\mathbf{x} = \mathbf{0}$$

$$\mathbf{x} = \mathbf{4}$$

at
$$x = 4$$
;

$$\mathbf{y} = \mathbf{2}(\mathbf{4})$$

P(4,8)

(2mks)

$$6x - x^2 = x$$

$$x^2 - 5x = 0$$

$$x(x-5)=0$$

$$\mathbf{x} = \mathbf{0}$$

$$x = 5$$

at
$$x = 5$$
;

$$y = 5$$

(b) Calculate the exact area of the shaded region.

Area under the curve;

$$y = 6x - x^{2}$$

$$= \int_{0}^{5} (6x - x^{2}) dx$$

$$= \left[3x^{2} - \frac{1}{3}x^{3} \right]_{0}^{5}$$

$$= \left[3(5)^{2} - \frac{1}{3}(5)^{3} \right] - \left[3(0)^{2} - \frac{1}{3}(0)^{3} \right]$$

$$= 33\frac{1}{3} - 0$$

$$= 33\frac{1}{3} \text{ sq. units}$$

Area under line;

$$y = x$$

$$= \int_0^5 (x) dx$$

$$= \left[\frac{1}{2}x^2\right]_0^5$$

$$= \left[\frac{1}{2}(5)^2\right] - \left[\frac{1}{2}(0)^2\right]$$

$$= 12.5 \text{ sq. units}$$

Area under line;

$$y = 2x$$

$$= = \int_0^4 (2x) dx$$

$$\left[x^2\right]_0^4$$

$$= \left[(4)^2\right] - \left[(0)^2\right]$$

$$= 16 \text{ sq. units}$$

(4mks)

Area under curve;

$$y = 6x - x^{2}$$

$$= \int_{0}^{4} (6x - x^{2}) dx$$

$$= \left[3x^{2} - \frac{1}{3}x^{3} \right]_{0}^{4}$$

$$= \left[3(4)^{2} - \frac{1}{3}(4)^{3} \right] - \left[3(0)^{2} - \frac{1}{3}(0)^{3} \right]$$

$$= 26\frac{2}{3} - 0$$

$$= 26\frac{2}{3} \text{ sq. units}$$

Area bounded by $y = 6x - x^2$ and y = 2x;

$$= 26\frac{2}{3} - 16$$

$$= 10\frac{2}{3} \text{ sq. units}$$

Area bounded by $y = 6x - x^2$ and y = x;

$$= 33\frac{1}{3} - 12\frac{1}{2}$$
$$= 20\frac{5}{6}$$

Area of the shaded region;

$$= 20\frac{5}{6} - 10\frac{2}{3}$$
$$= 10\frac{1}{6}.$$

(c) Taking the height of each trapezium as 1 unit, estimate the area of the shaded region. (4mks)

X	0	1	2	3	4
$y_1 = 6x - x^2$	0	5	8	9	8
$y_2 = 2x$	0	2	4	6	8

Area of curve;

$$y = 6x - x^{2}$$

$$= \frac{1}{2}[(0+8) + 2(5+8+9)]$$

$$= 26 \text{ sq. units}$$

Are of the curve;

$$y = 2x$$

$$\frac{1}{2}[(0+8) + 2(2+4+6)]$$
= 16 sq. units

Area bounded by
$$y = 6x - x^2$$
 and $y = 2x$;

$$= 26 - 16$$

$$= 10 \text{ sq. units}$$

For $y = 6x - x^2$ and y = x

X	0	1	2	3	4	5
$y_1 = 6x - x^2$	0	5	8	9	8	5
$y_2 = 2x$	0	1	2	3	4	5

Area of curve;

$$y = 6x - x^{2}$$

$$= \frac{1}{2}[(0+5) + 2(5+8+9+8)]$$

$$= 32.5 \text{ sq. units}$$

Are of the curve;

 $\mathbf{v} = \mathbf{x}$

$$\frac{1}{2}[(0+5) + 2(1+2+3+4)]$$
= 12.5 sq. units

Area bounded by
$$y = 6x - x^2$$
 and $y = x$;
= 32.5 - 12.5
= 20 sq. units

Area of the shaded region;

$$= 20 - 10$$

= **10** sq. units.

Differentiation and Integration.

1.